Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
3 Biotech ; 14(2): 36, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38221992

RESUMO

Geophytes are herbaceous plants that grow anew from underground buds and are excellent models to study storage organ formation. However, molecular studies involving geophytes are constrained due to the presence of a wide spectrum of polysaccharides and polyphenols that contaminate the genomic DNA. At present, several protocols exist for the extraction of genomic DNA from different plant species; however, isolating high-quality DNA from geophytes is challenging. Such challenges are further complexed by longer incubation time and multiple precipitation steps involved in existing DNA isolation methods. To overcome such problems, we aimed to establish a DNA extraction method (SarCTAB) which is an economical, quick, and sustainable way of DNA isolation from geophytes. We improved the traditional CTAB method by optimizing key ingredients such as sarcosine, ß-mercaptoethanol, and high molar concentration of sodium chloride (NaCl), which resulted in high concentration and good-quality DNA with lesser polysaccharides, proteins, and polyphenols. This method was evaluated to extract DNA from storage organs of six different geophytes. The SarCTAB method provides an average yield of 1755 ng/µl of high-quality DNA from 100 mg of underground storage tissues with an average standard purity of 1.86 (260/280) and 1.42 (260/230). The isolated genomic DNA performed well with Inter-simple sequence repeat (ISSR) amplification, restriction digestion with EcoRI, and PCR amplification of plant barcode genes viz. matK and rbcL. Also, the cost involved in DNA isolation was low when compared to that with commercially available kits. Overall, SarCTAB method works effectively to isolate high-quality genomic DNA in a cost-effective manner from the underground storage tissues of geophytes, and can be applied for next-generation sequencing, DNA barcoding, and whole genome bisulfite sequencing.

2.
Front Plant Sci ; 13: 933740, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051291

RESUMO

Potato is a temperate crop consumed globally as a staple food. High temperature negatively impacts the tuberization process, eventually affecting crop yield. DNA methylation plays an important role in various developmental and physiological processes in plants. It is a conserved epigenetic mark determined by the dynamic concurrent action of cytosine-5 DNA methyltransferases (C5-MTases) and demethylases (DeMets). However, C5-MTases and DeMets remain unidentified in potato, and their expression patterns are unknown under high temperatures. Here, we performed genome-wide analysis and identified 10 C5-MTases and 8 DeMets in potatoes. Analysis of their conserved motifs, gene structures, and phylogenetic analysis grouped C5-MTases into four subfamilies (StMET, StCMT3, StDRM, and StDNMT2) and DeMets into three subfamilies (StROS, StDML, and StDME). Promoter analysis showed the presence of multiple cis-regulatory elements involved in plant development, hormone, and stress response. Furthermore, expression dynamics of C5-MTases and DeMets were determined in the different tissues (leaf, flower, and stolon) of heat-sensitive (HS) and heat-tolerant (HT) genotypes under high temperature. qPCR results revealed that high temperature resulted in pronounced upregulation of CMT and DRM genes in the HT genotype. Likewise, demethylases showed strong upregulation in HT genotype as compared to HS genotype. Several positive (StSP6A and StBEL5) and negative (StSP5G, StSUT4, and StRAP1) regulators are involved in the potato tuberization. Expression analysis of these genes revealed that high temperature induces the expression of positive regulators in the leaf and stolon samples of HT genotype, possibly through active DNA demethylation and RNA-directed DNA methylation (RdDM) pathway components. Our findings lay a framework for understanding how epigenetic pathways synergistically or antagonistically regulate the tuberization process under high-temperature stress in potatoes. Uncovering such mechanisms will contribute to potato breeding for developing thermotolerant potato varieties.

3.
Cells ; 11(8)2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35455982

RESUMO

Sugars are the major source of energy in living organisms and play important roles in osmotic regulation, cell signaling and energy storage. SWEETs (Sugars Will Eventually be Exported Transporters) are the most recent family of sugar transporters that function as uniporters, facilitating the diffusion of sugar molecules across cell membranes. In plants, SWEETs play roles in multiple physiological processes including phloem loading, senescence, pollen nutrition, grain filling, nectar secretion, abiotic (drought, heat, cold, and salinity) and biotic stress regulation. In this review, we summarized the role of SWEET transporters in plant development and abiotic stress. The gene expression dynamics of various SWEET transporters under various abiotic stresses in different plant species are also discussed. Finally, we discuss the utilization of genome editing tools (TALENs and CRISPR/Cas9) to engineer SWEET genes that can facilitate trait improvement. Overall, recent advancements on SWEETs are highlighted, which could be used for crop trait improvement and abiotic stress tolerance.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Desenvolvimento Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo , Estresse Fisiológico , Açúcares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...